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ABSTRACT 

The elements of the inverse of a Toeplitz band matrix are given in terms of the 
solution of a difference equation. The expression for these elements is a quotient of 
determinants whose orders depend the number of nonzero superdiagonals but not on 
the order of the matrix. Thus, the formulae are particularly simple for lower triangular 
and lower Hessenberg Toeplitz matrices. When the number of nonzero superdiagonals 
is small, sufficient conditions on the solution of the abovementioned difference 
equation can be given to ensure that the inverse matrix is positive. If the inverse is 
positive, the row sums can be expressed in terms of the solution of the difference 
equation. 

1. INTRODUCTION 

The inversion of Toeplitz band matrices has been considered by many 
authors. A good summary of results about Toeplitz matrices appeared re- 
cently [lo]. Formulae for the inverses of general band matrices, including 
Toeplitz band matrices as a special case, were obtained in [12], and formulae 
specifically for the inverses of Toeplitz band matrices were derived in [ll]. A 
method using recurrences was described in [3] for the solution of Toeplitz 
systems of equations. Both [2] and [7] gave methods to calculate the inverses 
of symmetric Toeplitz band matrices. Two special examples of symmetric 
Toeplitz band matrices were inverted in [5] and [9]. In this paper Jacobi’s 
theorem is used to develop formulae for the elements of the inverse of a 
Toeplitz band matrix. The formulae are written in terms of the solution of a 
difference equation and expressed as a quotient of determinants, where the 
orders of the determinants depend on the number of nonzero superdiagonals 
of the original matrix. This compares with [12], in which elements of the 
inverse of a general band matrix are obtained in terms of determinants whose 
order depends on the bandwidth, and [ 111, in which two difference equations 
are solved to find elements of the inverse. It appears that the formulae given 
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here should be useful in cases where there are a small number of superdiago 
nals but the bandwidth is not necessarily small. 

It is often of interest to know that the inverse of a given matrix consists 
entirely of positive or of nonnegative elements. In [6] a condition depending 
on the zeros of a polynomial is shown to ensure that the elements of the 
inverse of a Toeplitz band matrix are nonnegative. Different sufficient 
conditions that the inverse of a Toeplitz band matrix with a small number of 
super-diagonals is positive or nonnegative are given here. The conditions are 
on the solution of the same difference equation which is useful in obtaining 
the elements of the inverse. Refer to the first example in Section 4 for a 
Toeplitz band matrix with a nonnegative inverse which does not satisfy the 
condition in [6] but does satisfy the condition given here. If the inverse is 
positive or nonnegative, the row sums can generally be obtained in terms of 
the solution of the difference equation. 

The type of matrix to be inverted here has bandwidth r and s superdiago- 
nals. The general form is 

I s+l a, . . . a, 
I st2 us+1 . . . . a1 

a, . 
a, 

0 

a1 

U s+l IXrl 

(1.1) 

where r < 2n - 1, 0 < s < min(r, n), and a, and a, are both nonzero. De 
fining 

Ai= ;i’ ( 

l<i<T, 

otherwise, 
(1.2) 

the (i,j) element of T,,, is Ai_i+s+i. 

2. ELEMENTS OF THE INVERSE OF Ts,n 

The matrix T_ is a submatrix of the lower triangular matrix 
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Jacobi’s theorem will be used to express T,T~ in terms of the elements of L-l. 
The elements of L-’ are related to the solution of a difference equation (see 
[ll]). Let gi be the solution of the homogeneous linear difference equation 

a&_, + a,_1gj_,+1+ . . . + a,g,-1= 0, i > 3, (2.1) 

with initial conditions 

and 

g,=g_,=*-. =g,_,=o when r>3, 

then L-’ is the lower triangular matrix (Gi_j+r),+,X,+,, where 

Gi= ii’ i>,1v 
( otherwise. 

Jacobi’s theorem [l, p. 991 implies that any minor of L equals the 
complementary signed minor of (L- ‘)’ times det( L). Thus, the (i, j) element 
of Tsh,!, which is the cofactor of the (j, i) element in T,, fl divided by the 
determinant of T,,,, is a quotient of minors of L and consequently can be 
expressed as a quotient of minors of (L- ‘)‘. The formula for the (i, j) element 
of Tspi is 

where 

Gi G n+l G n+2 

Gi-1 G* G n + 1 

Gi-2 G n-l Gn 

G,-,,, b”-s+2 G,,-s+l 

Gi-jps+l Gn-j-s+B G*-jps+l 

. . 

. . 

. . 

. . 

. . 

G n+s 

G IItS- 

G ?l+s-2 

G,+1 
Gn-j+l 

s 

> 

+1xs+1 
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D = s,n 

Some examples are illustrated below. The Toeplitz Hessenberg matrix, 

G nil G n+2 ... G,,, 

G” G ntl ... Gn+s-l 

&+2 &,+I . . . G,+1 
sxs 

T r, R, has an inverse with elements 

G %+I 
Gi-j Gn-j+l - 

G n+l 

and T2:ft has elements 

(2.2) 

'i G G+2 II+1 

Gi-1 Gn Grt+l 

Gi_j_l Gn-j Gn-j+l 
(2.3) 

It should be noted that when working with determinants in this applica- 
tion the identity 

IAl. 14~9, w)l = 
IA(P, P)I tAb 9)l 
IAh P)I IA(a 911 

(2.4) 

[8, p. 135; 1, p. 48; 31 is often very useful. Here ]A(p, 9)] is the minor of A 
when row p and column 9 are removed, and (A( ~9, ~9)) is the minor of A 
when rows p and 9 and columns p and 9 are removed. 

3. SUFFICIENT CONDITIONS FOR Toy; > 0, Tly; > 0, AND T2jft > 0 

Sufficient conditions for Tajft > 0, T;A > 0, and T;A > 0 are given in the , 
theorems which follow. 



INVERSES OF TOEPLJTZ BAND MATRICES 121 

THEOREM 3.1. Zf Gi > 0 for 1~ i 6 n, then ToTA 2 0. 

THEOREMS.% ZfGi<Oforl<i~n+land 

I:_l :+'I>0 for 2<i<n, 

then 2’;: > 0. 

Proof. The (i, j) element of Tl:fi is given in (2.2), and since G,, 1 < 0, it 
remains to prove 

Gi Gn+l 
Gi-j Gn-j+l 

>o for l<i,j<n. 

If i - j < 0, then this determinant is G,G,_ j+ 1, which is positive for 1~ i, j < 

n. The case i - j> 1 is more difficult. The stated conditions imply that 

Gi-j+l Gi-j+z 
Gi-j Gi_j+l “’ 

Now Lemma A.1 in the appendix can be used n - i times and its corollary 
j- 1 times to show that 

G; Gn+l 
Gi-j G,-j+l ‘O for l<i,j<n. n 

THEOREM 3.3. ZfG,>Oforl<idn+2, 

and 

Gi Gi+l Gi+z 

Gi_1 Gi Gi+l >O for 2<i,<n, 

Gipz Gi_l Gi 

then Tz~ft > 0. 
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Proof. The (i, j) element of Ta:A is given in (2.3) and since denominator 
of that expression is positive, it remains to prove that the numerator 

(3.1) 

is positive for 1 < i, j< n. 

The two main cases to consider are i - i- 1~ 0 and i - j- 1 > 0. If 
i - j- 1 Q 0, then this determinant is 

Gi G,+i Gn+a 

GiGl Gn Gn+l 

Go ‘n-j Gn-j+l 

(3.2) 

When i = 1, (3.2) is 

G 
G, G+l 

’ G,_j G,-j+l ’ 

which can be shown to be positive using methods like those in Theorem 3.2. 
When j= n, (3.2) can also be shown positive. For i >, 2 and j< n - 1, start 
with 

G, G, G 
Cl G, G, >O 

Go G, G 

and apply Lemma A.2 n - j- 1 times and its corollary i - 2 times to show 
(3.2) is positive. 

If i-j-l>O, thenstartwith 

Gi-j+i Gi-j+s Gi-j+s 

Gi-j Gi-j+i Gi-j+a 

Gi_j-1 Gi-j Gi-j+l 
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and apply Lemma A.2 n - i times and its corollary j- 1 times to show that 
(3.1) is positive. It should be noted that the conditions required for Lemma 
A.2 are met in the two previous cases, as all the relevant 2 X 2 determinants 
can be shown positive by methods like those in Theorem 3.2. n 

The row sums of TsTi are often required when Ts;A > 0. They can be 
expressed as follows. Let 

(3.3) 

then the sum of the ith row of To;: is Sj. The sum of the i th row of Tl;k is 

- 

Gi Gntl 
si-1 sn 
G ’ n+l 

(3.4) 

and the sum of the ith row of T2;A is 

Gi Gn+l Gn+2 
Gi-l ‘n Gn+l 

(3.5) 

For small bandwidth matrices with a, + a2 + . . * + a, not zero, the sum (3.3) 
is more conveniently expressed another way. Write down the difference 
equation (2.1) for indices 3,4,5 , . . . ,i + 1 and add all the equations. The 
quantity Si can thus be expressed 

si = 
kr, ’ 

i 2 1. 

1=1 

(3.6) 
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4. EXAMPLES 

The first example is a lower triangular matrix with r = 3, a, = 1, a2 = - 1, 
ua= -2,ands=O.Forthismatrix 

G.= [2i-(-l)i],3, i>,l, t 
i 0, i d 0. 

The elements of the inverse are obviously nonnegative. The row sum of the 
ith row, Si in (3.6), is 

1 - 

si 3G, 

- 

2G,_ 1 

2i+2 _ 3 _ 

( 

_ 

l)i = = -2 6 * 

This example has a nonnegative inverse but does not satisfy the conditions 
given in [6]. 

The symmetric Toeplitz tridiagonal has been discussed by many authors, 
for example [4]. In the notation used here r = 3, a, = - 1, a2 = (Y, a3 = - 1, 
and s = 1. Solving the difference equation for (Y > 2, 

i 

sinh i 6 -- 
Gi = sinh 8 

f9 = cash-‘;), i>,l, 

0, i < 0. 

The elements of the inverse are given by (2.2). To prove that the inverse 
elements are ail positive, observe Gi < 0, i > 1, and 

IS:_, :+‘i=l, i>2, 

so that Theorem 3.2 applies. The row sums can be obtained from (3.4) by first 
using (3.6) to find 

s,= l+((~-l)G~-G~_i 
1 a-2 

A fairly simple example with s = 2 is the symmetric five band matrix in 
[5]. For that matrix, r = 5, a, = 1, u2= -4, u,=6, u4= -4, and u,=l. 
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Solving the difference equation, 

i(i +1)(i +2) 
Gi = 6 ’ 

i >, 1, 

0 otherwise. 

The elements of the inverse are given by (2.3). To see that the inverse is 
positive, calculate 

I:_, :+‘/ =&j(i+l)‘(i+2), 

and by (2.4) 

Gi Gi+l Gi+z 
Gi-l Gi Gi+l 
Gi-2 Gi-1 Gi 

= i(i+l)(i+2) 
6 ’ 

Now Theorem 3.3 can be applied to show that the inverse is positive. 

APPENDIX 

Two lemmas will be established in this appendix. 

LEMMA A.l. Zf 

with a,b, a 0, a2b3 >, 0, and a&, > 0, then 

I I* bl b3 >O 

a1 a3 



126 D. S. MEEK 

Proof The first two inequalities can be written 

a&, > 0, and a3b2 > a2b3. 

Multiplication of the respective left and right sides of these inequalities gives 

aza3b&, > a~@& 

which upon division by a 2 b, yields the required result. n 

COROLLARY. Interchanging the diagonal elements gives a similar result 
that 

with a,b, 2 0, a,b, 2 0, and a,b, > 0 implies 

a3 b3 I I a1 b, “’ 

LEMMA A.2. If 

Cl c2 c3 c2 c3 c4 

bl b2 b, > 0 and b2 b3 b4 

al a2 a3 a2 a3 a4 

>o 

with 

then 

Cl c3 c4 

b, b, b4 > 0. 

al a3 a4 
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Proof The determinant relation (2.4) can be used to rewrite these 3 x 3 
determinants. The proof which then follows is very similar to the proof used 
for Lemma A.1. 

Rotating the columns so that c3 is in the top left comer and applying (2.4) 
with p = 2, q = 3, it can be shown that 

(A4 

Rotating the columns so that c, is in the top left comer and applying (2.4) 
with p = 2, q = 3, it can be shown that 

64.2) 

Finally, rotating columns so that c, is in the top left comer and applying (2.4) 
with p = 2, q = 3, 

Cl c3 c4 

bl b3 b4 

a1 a3 a4 

(A.3) 

The right sides of (A.l) and (A.2) can be written as inequalities in a 
manner similar to that used in the proof of Lemma A.l. Multiplication of the 
respective left and right sides of these inequalities and division by 

shows that the determinant (A.3) is positive. H 
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COROLLARY. Zf 
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Cl c2 c3 d, d2 d3 

b, b2 b3 >O and cl C2 c3 >o 

a1 a2 a3 bl b2 b3 

with 

then 

4 d2 d3 

Cl c2 c3 >o. 

a1 a2 a3 

I am indebted to the referee for suggesting the use of Jacobi’s theorem to 
derive the form& for T,,;’ in Section 2. This is a great improvement over my 
original proof: I also thank A. L. Andrew for bringing Ref: [3] to my attention. 
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